Secured UAV Operations in Robot Operating
System Framework With Asymmetric Encryption
and Digital Signatures

Christopher Richard Chandra - 18222057
Program Studi Sistem dan Teknologi Informasi
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
Email: 18222057 @std.stei.itb.ac.id

ABSTRACT

Unmanned Aerial Vehicles (UAVs) are increasingly de-
ployed in diverse applications from critical infrastructure
inspection to disaster response. It demands robust security
measures, especially when operating within the Robot Op-
erating System (ROS) framework over wireless networks.
This paper addresses the paramount challenge of securing
UAV operations against eavesdropping, data tampering, and
unauthorized control. We propose a comprehensive security
method that integrates asymmetric encryption and digital
signatures within ROS topic messages for communication
over insecure wireless channels. Asymmetric encryption (e.g.,
RSA or ECC) is utilized to establish secure communication
channels and protect sensitive command, control, and data
from unauthorized access. Digital signatures (e.g. DSA or
ECDSA) are used to ensure message integrity and authenticity.
Prevent malicious actors from injecting false commands or
manipulating flight data. This approach mitigates the risks
associated with data intercept and command spoofing which
are crucial to maintaining operational integrity and safety. We
detail the implementation strategy within the ROS architecture
by highlighting key security components and their integration
with existing ROS communication paradigms. Experimental
results demonstrate the feasibility and effectiveness of the
proposed cryptographic mechanisms in safeguarding UAV
operations. We will evaluating their impact on communication
overhead and latency. Also we will confirming their ability to
enhance the resilience of UAV systems in adversarial wireless
environments.

I. BACKGROUND

Unmanned Aerial Vehicles (UAVs) emerged from criti-
cal military applications where they have revolutionized re-
connaissance, intelligence gathering, surveillance, and target
acquisition [1]. The highly sensitive nature of these opera-
tions necessitated the development of robust, resilient, and
secure communication links to prevent unauthorized access,
command manipulation, and data exfiltration. Building on
this foundation, UAVs have rapidly transitioned into various

civilian and commercial sectors, including infrastructure in-
spection, agriculture, package delivery, and emergency re-
sponse, inheriting the imperative for equally stringent security
measures.

Often, the sophisticated functionalities of military and civil-
ian UAVs are backed by the Robot Operating System (ROS), an
open source framework designed to facilitate the development
of complex robotic applications [2, 3]. ROS provides a flexible,
distributed architecture that allows various components (nodes)
of a UAV system to communicate seamlessly over wireless net-
works and handling everything from flight control to payload
data processing.

However, this indispensable reliance on wireless communi-
cation inherently exposes UAV operations to significant secu-
rity vulnerabilities. The open and broadcast nature of wireless
channels makes communication susceptible to a variety of
adversarial attacks, including eavesdropping, jamming, man-
in-the-middle attacks, replay attacks, and spoofing [4]. In
military contexts, such compromises could lead to intelli-
gence breaches, mission failure, or even the weaponization
of hijacked assets. Similarly, in civilian roles, a security
breach could result in critical infrastructure damage, privacy
violations, or threats to public safety. While ROS offers a
robust development environment, its default communication
paradigms often lack built-in strong cryptographic protections,
presenting a substantial challenge for secure UAV operations
in both sensitive military and increasingly critical civilian
domains.

In order to enhance the security of message exchange within
the Robot Operating System (ROS), this paper introduces
a novel security layer utilizing asymmetric encryption for
data confidentiality and digital signatures for robust sender
authentication.

A. RSA Digital Signature

The RSA digital signature scheme is based on the RSA
public-key cryptosystem. It enables message integrity verifica-
tion and sender authentication by using a pair of cryptographic
keys: a private key for signing and a public key for verification.
The signing process involves hashing the original message and

myryngl

Private Key

»
#

Original Document Hashing Algorithm Hash

_
......
— L
e
asronr

Signed Document

Signed Document

- &

Original Document

#

Hashing Algorithm

If the hashes
are identical,
the signature
is valid

Public Key Hash

Fig. 1. RSA Digital Signature Visualization (Adapted from [5]).

encrypting the hash with the sender’s private key. Upon receipt,
the verifier decrypts the signature using the sender’s public key
and compares it to the hash of the received message. If they
match, the message is confirmed to be authentic and unaltered.
For each message the hash will be different. Therefore, it’s
possible to check the originality of the message based on the
hash only.

This approach provides non-repudiation as only the sender’s
private key could have generated the signature. RSA digital
signatures are widely used in secure communications, includ-
ing SSL/TLS, code signing, and blockchain technologies.

B. Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source mid-
dleware framework designed for developing complex robotic
systems. It provides a modular architecture in which software
components, known as nodes, communicate via message-
passing over topics, services, or actions. These interactions
typically occur over TCP/IP or UDP. However, by default,
ROS does not enforce encryption or authentication on its
communication channels.

Fig. 2. ROS Communication Visualization (Adapted from [6]).

This lack of built-in cryptographic security poses signifi-
cant risks when ROS is deployed in networked or wireless
environments, particularly in UAV systems. An attacker could
potentially intercept, modify, or inject malicious messages,
leading to system malfunction or unauthorized control.

While ROS 2 introduces improvements such as the Data
Distribution Service (DDS) for communication, it still broad-
casts topic data to all nodes within the same network by

default. This behavior makes it possible for adversaries on
the same network to eavesdrop on or tamper with messages,
compromising the integrity and reliability of the system. Inte-
grating digital signature mechanisms into ROS message flows
can address these concerns by providing authentication and
ensuring data integrity without requiring a complete overhaul
of the ROS communication model.

II. METHODS

A. System Overview

Command Node

Encrypt Message

l

Create Digital
Signature

Publish Message

C 5

Subscriber Node 1

—

Subscriber Node 3

Subscriber Node 2

N

Checking Digital
Signature

\ Message Valid /

A,

Deencrypt Message /
Payload

Send to Flight
Controller

l

Run Command

Fig. 3. Proposed System Architecture

The proposed system enhances the security of inter-node
communication within the Robot Operating System (ROS) by
integrating RSA-based digital signature mechanisms.

The architecture consists of a typical ROS-based UAV setup
where nodes exchange sensor data, control commands, and
status information over ROS topics. To secure these exchanges,
each publisher node is equipped with an RSA key pair. Before
publishing a message, the node computes a SHA-256 hash of
the message content and encrypts it using its private key to
generate a digital signature. The message and its corresponding
signature are then bundled into a custom ROS message for
encrypted data and then transmitted over the network.

On the receiving end, the subscriber node extracts the
received message and signature. It recomputes the hash of
the received message and decrypts the signature using the

sender’s public key. If the two hashes match, the message is
considered authentic and untampered. Otherwise, the message
is discarded, and an alert may be generated.

To support dynamic environments, the system introduces a
custom ROS service for secure public key distribution. Each
participating node is equipped with a pre-shared key pair
recognized by the key distribution service. This design enables
authenticated and flexible key retrieval while mitigating the
risk of unauthorized access.

This cryptographic layer is implemented without modifying
the core ROS communication framework. Instead, it is em-
bedded into the application layer using custom message types
and Python-based helper functions. This ensures compatibility
with existing ROS tools and workflows, while significantly
improving communication security. The system is designed
to be lightweight and suitable for real-time operations, with
minimal latency introduced by the cryptographic operations.

B. Development Environment

TABLE I
SyYsTEM CONFIGURATION
Component Specification
Operating System Ubuntu 22.04 LTS
CPU 11th Gen Intel i7-11370H (8) @ 4.800GHz
ROS Version ROS 2 Humble
Architecture x86_ 64 (64-bit)

Kernel Version
Development Tools
Simulation
Firmware

Linux 6.8.0-59-generic
CMake, colcon, Python 3
Gazebo & rviz2

PX4 Autopilot

C. Implementation

'secure_topic .
/secure_publisher I : /secure_subscriber

Fig. 4. Simple Secure Node

All source code and setup instructions for reproducing this
system are publicly available. !

This implementation follows a simple publisher-subscriber
communication model within the ROS 2 framework. Each
node is pre-configured with the public keys of all other nodes,
eliminating the need for dynamic key distribution or exchange
protocols. However, this static approach limits scalability, as it
only supports a fixed set of known nodes and does not allow for
runtime node discovery.

Each transmitted message includes a Base64-encoded en-
crypted payload and a corresponding Base64-encoded digital
signature. The publisher encrypts the message using a sym-
metric AES key, which is itself encrypted using the subscriber’s
RSA public key. The digital signature is generated by hashing the
original plaintext and signing it with the sender’s RSA private
key.

1GitHub repository:
Secure-Communication

https://github.com/Flame25/ROS2

On the subscriber side, the AES key is first recovered using
the subscriber’s private RSA key. The payload is then decrypted
using the AES key and initialization vector (IV). Finally, the
system verifies the signature by hashing the decrypted plaintext
and comparing it with the received signature using the sender’s
public key. This process ensures the confidentiality, integrity,
and authenticity of messages exchanged between nodes.

data:
signature:

"SGVsbG8gzZnJvbSBzZWNlcmUgcHV. .. "
"PTOgWW3DOu4nUi2hIld+7ceq..."

Fig. 5. Base64-encoded signed message echo from the secure publisher node

In order to enhance data security beyond authentication, we
implemented a simple RSA combined with AES encryption
scheme for each transmitted message. The plaintext is first
encrypted using the AES and we encrypt the AES Key using
recipient’s public key and then Base64-encoded all the messages
before being published. Similarly, the digital signature is gener-
ated using the sender’s private key and Base64-encoded as well.
At the subscriber side, both the encrypted data and signature
are first decoded from Base64, then the data is decrypted
and the signature verified. This layered cryptographic process
makes it significantly more difficult for an adversary to tamper
with or eavesdrop on the communication. Only the intended
recipient, possessing the corresponding private key, can decrypt
and interpret the message, ensuring secure communication in
distributed ROS 2 environments.

data: tLrERBU3MOKk+Rsns8WWOAG4pw. ..
signature: gsFwjexIygxh3rRIwxPN6giDt...
iv: sHbgFekHalOdbFBr+0QPyg==...
encrypted_key: m+iJKJ2V4ErShKx. ..

Fig. 6. Base64-encoded signed and encrypted message echo from the secure
publisher node

Fig. 7. ROS Topic Message Stream

III. EXPERIMENT

A. Attacker Node

In this section, we evaluate the robustness of the proposed
secure communication mechanism by introducing a simulated
attacker node into the system. This malicious node attempts to
impersonate the legitimate publisher by injecting falsified data
into the network. The objective is to determine whether the
subscriber node can reliably detect and reject messages that are
not signed using a valid private key associated with a trusted
publisher. By analyzing the subscriber’s behavior in the presence
of tampered or spoofed messages, we assess the effectiveness
of digital signature verification in preventing unauthorized data
injection within the ROS 2 environment.

https://github.com/Flame25/ROS2_Secure-Communication
https://github.com/Flame25/ROS2_Secure-Communication

ture! Data: 'Hello from secure publish|

ture! Data: 'Hello from secure publish|

'Hello from secure publish

Fig. 8. Invalid data received from attacker node

As shown in Fig.8, most of the messages sent by the attacker
node were successfully identified as invalid and subsequently
rejected by the subscriber. This is because the attacker uses a dif-
ferent key pair, resulting in digital signatures that fail verification
against known public keys. The outcome confirms the integrity
of the proposed system, demonstrating that it can effectively
distinguish legitimate messages from forged ones. These results
highlight the system’s potential for deployment in real-time
scenarios requiring secure and authenticated communication.

B. Performance

We evaluate the performance impact of the encryption and
decryption process by measuring the time taken for both
operations using a sample string message: "Hello from secure
publisher”. This dummy data was selected for its simplicity and
consistency during testing. The results, illustrated in Fig. ??,
show the average time required to encrypt the message using the
recipient’s public key and to decrypt it using the corresponding
private key. It is important to emphasize that these results are
based on a lightweight, non-representative payload. In real-
world scenarios, actual sensor data may be significantly larger
or more complex, which could lead to increased processing
times. Therefore, careful benchmarking is necessary, especially
in time-sensitive or mission-critical applications, where each
sensor reading may directly impact system responsiveness and
operational outcomes.

Sign + Encrypt Performance Over Time

Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Maecenas hendrerit interdum sem ac molestie.
Aliquam volutpat semper congue. Nunc et ante sed eros
viverra aliquet sed nec ex. Nam dapibus aliquet libero.
Duis posuere sodales nunc sed suscipit. Praesent in
elit non felis ultricies dictum. Nunc et viverra odio.
Morbi a felis in elit dapibus tempor nec vitae ipsum.
Sed pretium augue at massa facilisis ultricies. Morbi
hendrerit accumsan blandit. Nunc tincidunt in lectus ac
vulputate. Phasellus ac imperdiet ipsum. Nullam sagittis
odio ac.

Fig. 10. Longer message used for encryption and decryption performance testing

This test simulates a extreme data load that heavier than
the original data from a sensor or information-rich publisher
node. We recorded the encryption and decryption time for this
extended message and present the results in Fig. 11. As expected,
the processing time increased compared to the shorter test case.
This highlights the need for efficient cryptographic handling and
careful benchmarking, especially in time-sensitive applications
such as robotic control or mission-critical systems.

Sign + Encrypt Performance Over Time

Verify + Decrypt Performance Over Time.

oo — vy~ eerypr.

Fig. 11. Extreme Performance Test

Sign + Encrypt

Verify + Decrypt Performance Over Time

Fig. 9. Performance measurement with simple text

With the aim of testing limit the performance under more
heavier payload conditions, we used a longer message string, as
shown in Fig. 10.

Verify + Decrypt Performance Over Time.

Fig. 12. More Extreme Test (5 Paragraph lorem ipsum)

C. Simulator Test

To evaluate the effectiveness of the proposed encryption
and digital signature mechanism in a realistic control sce-
nario, we integrated the system into a Gazebo simulation
using PX4 autopilot. The simulation involves a trajectory
control interface where PX4 listens to a ROS 2 topic,
/fmu/in/trajectory_setpoint, for receiving position
and velocity setpoints in offboard mode.

A custom ROS 2 bridge node was developed to sub-
scribe to /secure_trajectory, a planning-level topic
that represents the intended flight trajectory. This node ver-
ifies the authenticity and integrity of the message using
digital signature verification. Only if the message is deemed
valid, the node republishes the data to the actual PX4 topic
/fmu/in/trajectory_setpoint.

Isetpaint_publisher Jsecure_trajectory
Isecure_trajectory Jsecure_subscriber
/attacker_node

Fig. 13. Node Graph

The primary goal of this bridging approach is to test the
robustness of the implemented security mechanisms. It ensures
that any data injected from unauthorized or compromised
sources—lacking a valid signature will be identified and
ignored by the system. This helps prevent malicious commands
from influencing the drone’s flight behavior, thus preserving
operational safety within a simulated but realistic autonomous
environment.

The results of the simulator test demonstrate that the secure
communication method featuring encrypted payloads and digital
signature validation can be integrated into a ROS 2 based PX4
autopilot system without introducing any noticeable delay or
performance degradation. The drone was able to respond to
trajectory commands at a high frequency, maintaining stable
flight even when valid movement commands were published at
a high rate. The validation node, responsible for checking digital
signatures, successfully filtered out unauthorized or tampered
messages, ensuring that only authenticated data influenced the
drone’s behavior. Furthermore, injected commands from an
attacker node with an invalid or mismatched digital signature
were consistently ignored, confirming the effectiveness of the
security mechanism in rejecting spoofed data while preserving
real-time responsiveness.

Fig. 14. Performance Measurement using Simulator

IV. FuTturE WoORK

As future work, implementing a secure service for dynamic
key generation and distribution could significantly enhance the
scalability, flexibility, and usability of the proposed architecture,
while still preserving strong cryptographic guarantees. Such a

service would allow new nodes to be onboarded automatically
without the need for manual key provisioning, making the
system more adaptable for real-world robotic deployments
where nodes may be added or removed on the fly. To further
strengthen the architecture, this mechanism could be extended
and integrated directly into the ROS 2 framework layer. This
would ensure that encryption and authentication are enforced
by default at the middleware level rather than being handled
manually at the application layer. In such a framework, all
communication topics could be encrypted by default and data
access would be restricted based on roles or permissions defined
during node registration. Only nodes with valid cryptographic
credentials and explicit authorization would be able to access
certain topics or services. This implementation will significantly
reducing the attack surface. This role-based security model
combined with automated key distribution would provide a
robust and scalable foundation for secure multi-agent robotic
systems.

V. CONCLUSION

The results demonstrate that the proposed method can be
effectively integrated into a ROS 2 environment without intro-
ducing significant performance degradation. Simulator testing
confirms that encrypted and authenticated messages do not
cause noticeable delays or disruption in control performance,
even at high command rates. However, the implementation
complexity increases due to the requirement for manual key
distribution. Each node must be provisioned with the public
keys of all other trusted participants. This makes it challenging
to scale or adapt in dynamic systems as adding a new node
requires generating and securely distributing keys in advance.
Additionally, if the onboard computer is compromised, an
attacker could potentially access private keys which posing
a significant security risk. While the current implementation
performs well in simulation, further validation is needed in real
drone deployments to fully assess its resilience and reliability
under real-world conditions.

DEMONSTRATION VIDEO & CODE

A demonstration video showcasing the system in action,
including message encryption, digital signature validation, and
simulator integration, is available online.2

The source code and demonstration scripts are available at
marked repository. 3
REFERENCES

[1] A. Konert and T. Balcerzak, “Military autonomous

drones (uavs) - from fantasy to reality. legal
and ethical implications.” Transportation Research
Procedia, vol. 59, pp. 292-299, 2021, 10th

International Conference on Air Transport — INAIR
2021, TOWARDS AVIATION REVIVAL. [Online].

2Video demo: https://youtu.be/Co018TFREB4
3GitHub repository: https://github.com/Flame25/ROS2
Secure-Communication

https://youtu.be/Co018TFREB4
https://github.com/Flame25/ROS2_Secure-Communication
https://github.com/Flame25/ROS2_Secure-Communication

Auvailable: https://www.sciencedirect.com/science/article/
pii/S2352146521008838

[2] S. Macenski, T. Foote, B. Gerkey, C. Lalancette,
and W. Woodall, “Robot operating system 2: Design,
architecture, and uses in the wild,” Science Robotics, vol. 7,
no. 66, p. eabm6074, 2022. [Online]. Available: https:
/Iwww.science.org/doi/abs/10.1126/scirobotics.abm6074

[3] “ROS 2 Documentation [Online],” Available: https://docs.
ros.org/en/humble/index.html, [Accessed: 10 June 2025].

[4] U. Patil, A. Gunasekaran, R. Bobba, and H. Abbas, “Ros2-
based simulation framework for cyberphysical security
analysis of uavs,” 2024.

[5] “Digital Signature [Online],” https://techterms.com/
definition/digitalsignature, [Accessed: 15 June 2025].

[6] Robotics Unveiled, “ROS2 Service Server
and Client - Python and C++ [On-
line],” https://www.roboticsunveiled.com/
ros2-service-server-and-client-python-and-cpp/,
[Accessed: 15 June 2025].

[7] F. J. Aufa, Endroyono, and A. Affandi, “Security system
analysis in combination method: Rsa encryption and
digital signature algorithm,” in 2018 4th International
Conference on Science and Technology (ICST), 2018, pp.
1-5.

[8] S. U. Jonwal and P. P. Shingare, “Advanced encryption
standard (aes) implementation on fpga with hardware in
loop,” in 2017 International Conference on Trends in
Electronics and Informatics (ICEI), 2017, pp. 64—67.

[9] R.Aissaoui, J.-C. Deneuville, C. Guerber, and A. Pirovano,
“Authenticating civil uav communications with post-
quantum digital signatures,” in 2023 IEEE/AIAA 42nd
Digital Avionics Systems Conference (DASC), 2023, pp.
1-9.

[10] L. He, Y. Gan, and Y. Yin, “Efficient threshold
attribute-based signature scheme for unmanned aerial
vehicle (uav) networks,” Electronics, vol. 14, no. 2, p.
339, Jan. 2025. [Online]. Available: http://dx.doi.org/10.
3390/electronics 14020339

PeErRNYATAAN KEASLIAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

s

Christopher Richard Chandra
(18222057)

https://www.sciencedirect.com/science/article/pii/S2352146521008838
https://www.sciencedirect.com/science/article/pii/S2352146521008838
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
https://techterms.com/definition/digitalsignature
https://techterms.com/definition/digitalsignature
https://www.roboticsunveiled.com/ros2-service-server-and-client-python-and-cpp/
https://www.roboticsunveiled.com/ros2-service-server-and-client-python-and-cpp/
http://dx.doi.org/10.3390/electronics14020339
http://dx.doi.org/10.3390/electronics14020339

	Background
	RSA Digital Signature
	Robot Operating System (ROS)

	Methods
	System Overview
	Development Environment
	Implementation

	Experiment
	Attacker Node
	Performance
	Simulator Test

	Future Work
	Conclusion
	References

